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ABSTRACT

An analytical functional can be expressed as a sum of some nonlinear flmctional expansions

which we shall call Fliess's generalized expansions. These nonlinear fimctional expansions are anal-

ogous to Fourier series or integral expansions of response fimctions of linear systems. The shuffle

product which is the characteristic of the nonconmmtative algebra introduced plays a very signifi-

cant role in this approach. Moreover what makes this approach more attractive is the possibility of

doing all of the nonconmmtative algebra on a computer in any of the currently available symbolic

progranmfing languages such as Macsyma, Reduce, PLI, and Lisp.

Nonlinear functional expansions for the solution of nonlinear ordinary differential equations

can be sumnmrized by the newly introduced Laplace-Borel transforms. Some properties of these

transforms .are obtained by the second author earlier. Some flirther properties will be given in this

paper for the first time.

The nmin theorem of the paper gives the transforln of the response of the nonlinear system

as a Cauchy product of its transfer function which is introduced for the first time here and the

transform of the input function of the system together with memory effects.

Applications of this new transfer-function approach are given using nonlinear electronic circuits.

Two categories of applications are presented, namely,

• analysis of circuits

• synthesis of circuits.

We would like to renfind the reader that various other examl)les can be given from other non-

linear dynanfical systems; for example nonlinear aerodynanfics, nonlinear fligh! mechanics in which

cases these two classes of problems can be called either direct l)rol)lems or inverse problelns.

INTRODU('TION

The solution of dynanfic problems by classical differential equation analysis is arduous, so that

various methods of transform calculus have been developed to ease the burden and increase the
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understanding. It is interesting to note that such modern techniques stem from the work of

19Ih century mathematicians such as Fourier, Laplace, Cauchy, and others.

In this paper we shall develop a methodology to study nonlinear systems via transform methods.

In particular we shall use the Laplace Borel transforms which are discussed in references 1, 2, and

3.

The dynamic performance of any initially dead system can be readily described by the frequency

response function,G(jw), thus:

G(jw) = _// (1)

where 2- denotes the Fourier transform. This notion is closely related to the transfer function,G(s),where

£o

= (2)

where £ denotes the Laplace transfornl. The frequency response function and the transfer function

are interchangeable by the substitution s = jw. Thus the Fourier transform of the system output,

Fo(jw) is given by

5o(ju,) = G(ju,).2-i(jw) (3)

where .Ti(ju,) is the input to the system expressed as a function of frequency either by the Fourier

series for periodic functions or by the Fourier Integral for aperiodic functions. The Fourier transform

enables a system response to transient excitations to be evaluated in terms of steady-slate responses

to sinusoidal excitations. Fourier methods have direct application to a few problems which are less

easily solved by the Laplace transform:

1. Random problems (i.e., noise and teleconununications) in which the input function can best

be expressed as a frequency spectrum (i.e., a Fourier integral).

2. Transformation of functions which are nonzero for negative t and are, therefore, not Laplace

transformable.

To find a Fourier pair from a Laplace pair:

1. If the Laplace transform, F(s), has poles on or to the right of the imaginary axis there is no

Fourier transform; i.e., F(s) = !, or F(s) = _ have no Fourier equivalent.

2. Substitute jw for s in F(s) to give F(jw).

3. Note that in using this method fit) is zero for negative t.

The Laplace-Borel transforms can be sununarized as operators which we can obtain from the

Laplace transformations as follows:

IsF(s)],:,g, (4)

except tha! the algebra on the nonconunutative variable x0 is richer. We have another type of

product called shuffle product (Le m61ange) in addition to Cauchy product. It is the shuffle

product which provides the mechanism for us to take care of the nonlinear terms. The shuffle

product and some related properties are presented in reference I. The connection between the

l.aplace and Fourier transforms is analogous to the one in between the Laplace-Borel and Fourier-

Borel transforms. We can generalize the Laplace-Borel transforms to Fourier-Borel transforlns in

the same way thai Fourier transforms are generalized from Laplace transforms.



LAPLACE-BORELTRANSFORMS

We have introduced the following section to make the paper self-contained.

development we refer the reader to references 1 and 2.

For an analytical functional or function f(t) we have the following expansion:

For some basic

t/l

f(t) = a. n-i (5)
n>0

For this expansion, as shown by Fliess and later by [_nal in references 1 and 2 there exists a

corresponding generating power series:

G= E anx_ (6)
n>O

in which _'0 is the nonconmmtative variable. Then the Laplace-Borel transformation is defined as:

£B[f(t)] = G (7)

n>O

We shall give the following theorem as one of the basic theorems

(8)

Theorem 1 : For an analytic function f(t), there exist a corresponding function F(xo) of non-

commutative variable Xo defined by an integral transformation:

fo _
F(xo) = Xo 1 c-t/_°f(t)dt (9)

which is the c,rldicit form of the Laplace-Borel transformation.

Proof: Let us consider an analytic function f(t)e -t/_° instead of f(t) and integrate from t 0 to

t = oc. When we multiplied f(t) with c -t/_° which is a convergence factor we make f(t)c -t/_°

absolutely integrable even if f(t) is not. The integral I becomes

b _'1I = _ a,,_e-t/'odt (10)
n>O

_0 00 t _'l= _ a. _e-t/_°dt
n>O

Nex! we shall use the chain rule with the usual chain rule notation:

(11)

t Iq

U _--- --

n!
(12)

dv = e-t/Z°dt (]3)

Substitute these in I,

fo e'_DI = _ a.(uv 1_¢ - ,,du)
n>O

(14)



fO °° t n-1= _, a.zo (n- 1)! c-t/_°dt
n>O

If we conlinue the integration sinfilarly, we obtain

I : zo _ a.z_
n>O

= xoCB[f(t)]

Therefore, we can write

£B[f(t)]- F(xo)

//= :rolc-t/_°f(t)dt

Next we shall give some examples to illustrate how this integral transform is obtained.

• Example 1:

Laplace-Borel transform of the unit step function is as follows :

Lel the unit step function be denoted by u(t) then

/0"
= --XO l £ -x°-]

=1

• Example 2:

Laplace-Borel transform of f(t) = tu(t) is as follows

F(xo) = £B[tu(t)]

-- fo _ _'olc-%itdt

Integration by parts with u = t and dv = e-_'tdt

F(xo) = £B[tu(t)]

= X 0

* Example 3:

Lal)lace Borel transform of £(t) = t"u(t) is as follows

F(xo) = fo _° Xolt"c-_;'tdt

Applying the integration by parts again like in tile previous example we have

F(a,o) : £B[t"u(t)]

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29}



• Example 4:

Laplace-Borel transform of f(t) = e"tu(t) is as follows

F(xo) = £B[c-atu(t)] (30)

O ° Xol e-at c-xo' tdt (31)

= XoaC-(a+_°)tdt (32)

F(2,0) = (33)
1

_ (34)
1 + axo

Transform Theorems

Nonlinear differential equations in the time domain are transformed into nonlinear algebraic

equations in the transform domain x0-domain by Laplace-Borel transforms. To establish the rela-

tionshil)s between the operations in the two domains, a series of theorems are developed and their

applications are illustrated with suitable examples.

Theorem 2 (Linearity Theorem) : If

_B[fl(t)] = Fl(x0) (35)

and

thcll

u,berc a and b arc constants.

= F2(.o) (36)

(37)

This relationship follows directly from the definition of the Laplace-Borel transform. Its principal

use is in the decomposition of time functions and transforms to simplify the transformations and

inversions. For example, suppose f(t) = sinwot ;

£13[sinwot] = £13[ cJw°t - c-J"°t] (38)
2j

From the earlier examl)le we have

1

£13[sinwot] = 1/2j[ 1 _ jw0xo

WOJ' 0

2
1 + u,sz o

1
] (39)

1 + ju'oxo

(40)

Theorem 3 : If a causal function f(t)u(t) is dclaytd along the t-a,ris by an amount to its Lot,lace-

Ban I transform is given by the transform of the unddaycd function multiplied by the e.rpontntml
C 'r O- I tO,
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The proof is as follows :

£B[f(t - to)u(t - t0)] = zol f(t - to)u(t - to)e-Z;'tdt

fO O0 --1
= Zolf(t - to)e-=o tdt

(41)

(42)

fO ° 1 -a'ol t
El3[f(,_t)] = x o f(at)c dt (51)

Now we make a change of variable namely, 7"= at and we obtain

Z£_[f(.t)] = (_,xo)-' f(,-)_-(°'°)-"d, (52)

= F(a_'0) (53)

We can make use of this theorem and the transforms derived for normalized thne functions can be

modified to cover a wide range of related functions.

The proof is as follows :

where t0 > 0. Now, we can make a change of variable t - to = r and we obtain

£B[f(t - to)u(t - to)] = L _ zol f(r)e-Xol(to+r)dT (43)

L°= e-_;'to zo'f(r)c-_';'"dr (44)

-_e-,;'tof..13[f(r)] (45)

= e-_o'toF(zo) (46)

As an exmnple of the use of the to shift theorem, we shall deternfine the Laplace-Borel transform

of a rectangular pulse function with a pulse width of T and amplitude of unity. Such a function is

expressed as
fp(t) = u(t) - u(t - r) (47)

The Laplace-Borel transform of fp(t) is

t_/3[fp(t)] -- £B[u(t)]- Cl3[u(t - r)] (48)

= 1 - e-_ff'_ (49)

The pulse fimction finds a variety of applications in formation of pulse type signals since a valid

time fimction description of any signal extending over the interval to to to + T can be obtained by

multiplying the generating signal by fp(t - to).

Theorem 4 (Scale Change Theorem) : When the independent variable t is multiplied by a

const,nt _ (i.e. scaled by o) the corresponding transform is 9iven by

£B[f(at)] = F(aa'o) (50)



Theoreln 5 (Differentiation Theorem) : Laplace-Borel transform of the time derivative of a

f,,nction f(t) is

£13[d/dtf(t)] = Zol[F(x0)- f(0)] (54)

u'bere F(a'o) is th¢ Laplace-Bord transform of the function f(t).

Proof : We shall use the definition of the Laplace-Borel transforna again

/5£13[d/dtf(t)] = x° 1 df(t) -_c-_o 'tdt (55)

Integration by parts gives (u = e-_g 't and v = f(t)):

f0 ° -I
£B[d/dtf(t)] = Xoa[e-_o'tf(t)] t_ + xolf(t)e-_o tdt] (56)

since f(t)e-_g _t approaches to zero as t _ co. It follows that

Ct3[d/dtf(t)] = Xol[F(x0)- f(0)] (57)

Hence we establish here that the differentiation in time domain corresponds to multiplication by
-1

a"0 in the x0-transform domain after a constant which is equal to the value of the function at t = 0
is subtracted. We demonstrate the application of this theorem as follows:

d

£B[coswot] = £1311/Wo _ sinwot] (58)

-1= x o 1/wo£B[sinwot - sin(0)] (59)

_ xo (60)
£B[coswot] = Zo I 1 + u,0a02._

1

- 1+ .,oh,0_ (61)

As an extension of this theorem one can easily obtain the expression for the transformation of the

second lime derivative as

d 2

z:t_[d-_f(t)] = a,oa[xo'F(x0)- Xoaf(0)- f'(0)] (62)

= xo2F(a,o)- Xo2f(O)- Xo'f'(O ) (63)

Theorem 6 (Integration) : Loplace-Bord transform of the d_[initt inttyml

Cl3[ fo t f(A)dA] (64)

i.¢ eq_tal to
= xoF(xo) (65)



Proof :

--1

Integration by parts with u = ft f(A)dA and dv = e -_'o tdt

' _ x°ic-%'tLt + 1--_-L°° - e-%'tf(t)dti (67)z:_[L f(,_)d,_} f(X)a:_t_> _oxo 1 z_ l

since c _o 't --_. 0 for t _, oc and Jo f('_) d'_ It=o= 0 then

c,tfo's( )d l = fo®XO 1 c-Zglt f(t)dt (68)

L'/ZB[ S(A)d_]-- xoF(xo) (69)

which completes the proof.

Theorem 7 (Convolution) : Let f_(t),F_(x0) and f2(t),F2(xo) bc two Laplac¢-Bor¢l transform

pairs, th¢n the Laplace-Borel transform of the convolution of the fl(t) and f2(t) is 9ivcn by

_]3[fl(t) * f_(t)] = xoFl(xo)F2(xo) (70)

Proof : Let us try to find the inverse transform of the product.

OO -I
xoFl(xo)F_(xo) = zoFl(xo)[ x_IS2(t)c-:o tdt] (71)

Changing the variable of integration and bringing Fl(xo) under the integral sign gives

L"xoFl(xo)F2(xo) = Fl(xo)f_()_)e-=ff'Xd)_ (72)

Noticing that

we can write

_T -1Fi(xo)C o _ -_£e[f_(t- A)u(t- A)]

ffffx0Fl(x0)F2(x0) = [ xolSl(/- )_)u(t- )Qc-=g'tdt]f2(,X)dA

S/ L"
Noting that ,\ ran not exceed ¢ because of u(t - A), we can write

_,of_(_.o)F_(xo)= _ /_(t - _)12(_),_al_-=o'at

llton we have

t• 0F_(_0)F2(_o)= t:t_[ f_(t - _)f:(x)aA}

(73)

(74)

(75)

(76)

(77)

8



or usingthe shorthandnotationfor convolution,

_B[fl(t) * f2(t)] = x0Fl(xo)F2(xo) (78)

FOURIER-BOREL TRANSFORMS

An analytic flmction f(t) can be represented as a linear combination of a set of elementary time

functions called basis functions ,I,.(t) as shown below:

:(')= (79)

Let us define a basis function ,I,,,(t) and its complex conjugate q,_,(t) as

_. (t) = jn_od "_°' (80)

'_'.(t) = -jn_oe -j'_°t (81)

where n = 0, _-1, _-2,...,Toc and /3o = -_. We can show that these functions are orthogonal so

thai
1

--["+r_,,(t)_'.(t)dt : A. (82)
T dr I

_. = (n_0) 2 (83)

This ensures tile desired property for a set of basis functions; namely, the finality of coefficients

which allows one to deternfine any given coefficient without the need for knowing any other coef-

ficient. To d,,lerntine the coefficients a., we multiply both sides of the equation defining f(t) by

tI)7,(I) and integrate over the specified interval. This gives

tlA-T N

/"+_ _;(t)l(,)._, = f _:.(,)I_ ...._..(,)l,t (84)
Jtl I tl_O

_-_N : q + T _,,(t)4.dt
n=O dtl

From orthogonality condition we have

ff :(t)f(t)dt

(85)

(86)

Sul)slituting the last equation into the first equation gives

f(') _ j,,./3od":'°'[l fT/.'/3°= --e-J"_ot/(t)dt]
.... ,,_ (n/3o)2T J-T/2 J

(87)

. 1 :T/2 1
= _ Jn/3°d"_°t[ 2r J-t�2 jn/3o c-j"13°'f(t)dt]

(88)



Note that fl0 2,_ is the lowest frequency component and also the spacing between the harmonics.

Now if we let T --_ oo, the spacing between harmonics will become a differential, that is/3o -4

dfl. The number of components becomes infinite hence n -_ o¢. The angular frequency of any

particular component is given by nil0; and the sununation formally passes into an integral. If we

rewrite the last equation as

f(t) : -_J&J_'[ G

or

f(t) = _ _ ed#t{jfl f(t)dt}dfl (90)

It is clear thai the inner integral is only a function of the angular frequency since the time is

integrated out. Now we shall call the inner integral Fourier-Borel transform of f(t) and we shall
denote it as follows:

.Y'B[f(t)] = F(jfl) (91)

= jfl f__ e-Jatf(t)dt (92)F(jfl)

Similarly we shall define the inverse Fourier-Borel transform as

.Tl3-'[F(jfl)] = f(t) (93)

lfff(t) = _r (Jfl)-l F(j/3)cJatd/3 (94)
(3O

The functions f(t) and F(jfl) are called the Fourier-Borel transform pairs. It should be noted that

if we choose the basis functions and their complex conjugates as

• .(t) : (c, + j,,flo)cJn_ (95)

q_,(t) : (c_ - jn/3o)C -'/'_° (96)

In this case the Fourier-Borel transform pair becomes

._B[f(t)]= F(j/3) (97)

FF(jfl) = (c_ + jfl) f(t)e-JCtdt (98)

_B '[F(jfl)] = _ (_ + jfl)-'/(t)rJa'd_ (99)

Let us consider the Fourier-Borel transform of the function f(t)c -_t rather than the function

f(/). In this case the factor r -_t is a convergence factor that tends to nmke e_tf(t) absolutely

integrable even if f(t) is not. The Fourier-Borel transform of f(t)e -_t is :

//FB[e-_tf(t)] = (a + jfl),--_'/(t)e-J_'dt (100)

//= (c_ + jiJ)r-("+J_)tflt)dt (101)
oo

= F(o + j/3) (102)

10



The correspondinginversetransformis

1 (o + ji3)-lF(o + jfl)eJatdfl (103)
fB-'[F(. + jfl)] = _

the convergence factor can be taken to the right-hand side to give

1 (o + j/3)-lF(a + jfl)c(_+J3)td/3 (104)
f(l) = _

Next we shall define a new variable z0 = a + jfl then we have dzo = jdfl if o is constant. The

inverse transform becomes

f(t)- 2rj ,,_ z°lF(z°)e:°tdz° (105)

hnportant Properties of Fourier-Borel Transforms

We shall give the following most important properties of the Fourier-Borel t.ransforms without

proving them, but interested reader can verify them by using the basic definitions given in this

text:
2 2 2

[FI(Xo)+ F2(xo)]LI = F,(xo)I_I+ 2[F,(xo)H F2(zo)]+ F2(xo)II (lO6)

2 2

F,(Xo)LI F2(xo)= I/4{[r,(xo)+ F2(xo)]H -[F_(xo) - F2(xo)]LI} (107)

dxo[F,(xo)LI F2(xo)]= F,(xo)H F2(zo)+ F2(z°)LI xodF'(x°) (108)

F,(xo)H[F2(xo)+ F3(xo)]= Fi(xo)H F2(xo)+ Fl(XO)H F3(xo) (I09)

a[F,(xo)LIF2(xo)]= oF,(xo)LIF2(xo) (II0)

= F,(xo)HOF2(Xo) (III)

F,.(F2LI F3) # F,.F211F3 (112)

Ln[F,(xo) LI F2(xo)] = Ln[F,(xo)] + Ln[F2(xo)] (113)

n

Ln[F(xo)LI ]= nLn[F(xo)] (114)

EX[F,(xo) LI F2(xo)] = EX[FI(xo) + F2(xo)] (115)

Ln{EX[F(xo)]} = EX{Ln[F(xo)]} (116)

= F(xo) (117)

Another very useful result is as follows:

1 1 1

(1 + aa'o) (1-'') H (1 - oxo) - (1 -axo)" (11_)

We shall prove this result for n = 2 and then by the method of matbenmtical induction more

general case can be obtained. For n = 2 we have

1 - (1 + ax0)H 1 (119)
(1 -ax0)2 (1 -ax0)

11



Theorem 8 (Shifting) : The Fourier-Bord transform of a function is related to that of th_ [unc-

tion multiplied by an exponential function e -at as follows

:B[f(t)e -at] _ Zo+_F(:0 + _) (120)

ZO

- z0 +/3 HF(z°) (121)

Proof:

f0 °
._13[f(t)e -at] = zoe-'ot f(t)e-_tdt

-- zo e-(:°+_)tf(t)dt

/0zo (zo + _)e-("°+a)tf(t)dt
zo+3

- zoZ°+flF(zo + fl)

From ()na! in reference 1 we also have

(122)

(123)

(124)

(125)

_-t_[e-a'f(t)]-- 7B[e-_']LI _t_[f(t)] (126)

_ Zo HF(zo) (127)
zo+_3

which completes the proof.

Connection Between Fourier-Borel and Laplace-Borel Transforms

We have the tbllowing integral representation for the two-sided or bilateral Laplace-Borel lrans-

forms

F(=o) = :oc-:°tf(t)dt (128)

Let, I represent the following integral

Lel

fO °_
I = f(t)e-:°tdt (129)

fo _ t"= E a'_ c-:°tdt (130)
n>0

_-E a,,ff
n>O

t _

n!

e- :°t dt =- d_,

I= _ a,,[fract'n!Zole -:°t 1_o + fo °°
rt>0

-1 t("-l) -:ot]d t
-o (n- 1)! e

(131)

(132)

(133}

(134)

12



Hence tile integral I becomes

_0 °° t In-l)= _ anz01 (n- 1)!
n>O

x= zo'E oozo°
n>O

l
Z 0 _ --

XO

__e- :Otdt

X = Xo _ a.x'_

= xo£B[f(t)]

EB[f(t)] = :oI

/:£/_[/(t)] = Zof(t)c-*°tdt

= F(Zo)

where =o = a'o 1 in which a'o is the noneonmmtative variable.

(135)

(13_)

(137)

(138)

(139)

(140)

(141)

(142)

TRANSFER FUNCTIONS FOR NONLINEAR SYSTEMS

Consider the following class of nonlinear systems with polynontial nonlinearity described by

. d i

ai_a,(t) + _ bjxJ(t) = f(t) (143)
i=1 j=l

We define th, operator LV' as the shuffle product which is defined by [rnal in reference 1 repeated

n times and the transfer function is the transform of the response caused by a unit. step function

wilh zero initial conditions
i

_(zo, H) - X(:o) lf(t)=,_(t) (144)

In the Laplace-Borel transform domain the following nonlinear differential equation becomes

dx(t)
d----[-+ kl,v(t) + k2x2(t) = f(t) (145)

:o[X(:o) - x(O)] + klX(zo) + k2 [X(:o)[.I X(:o)] : CB{f(t)} (146)

From Onal (ref. 1) we have

£B[u(t)] : 1 (147)

with the zero initial conditions (i.e., x(O) = O) the transfer function for this nonlinear differential

('(tual i(m becomes
2-I 2-1

(:0 + _', + _,_,]_l)(;(:o, I_I) = 1 (148)

or

2-1 1

a(:0, ll)=
20 -]- _'1 + _'2H 2-1 (149)

13



Theorem 9 (Main Theorem) : The Laplace-Betel transform of the response of the nonlinear

system considered is equal to the Cauchy product of the transfer /unction[G( zo, H)] with the Laplace-

Bor_l tronsform of the/unction which consists of the forcing/unction and the initial conditions of

tbr r_sl_)nse and all of its higher order derivatives.

i-1 d k all_k_1

X(=o) = 6'(:o, H).t:t_{/(t) + _ -,d-_(0)_6(t)} (150)
k=O

i-1 d _ di - k

= G(z°'LI )'£B{f(t) + E °i-d_Z(O)dt---(_-ku(t)} (151)
k=O

Proof:

Let us consider a nonlinear dynanfical system described by an n th order nonlinear differential

equation with mth order polynonfial nonlinearity as follows :

n i md

E ai-_jx(t) + klX(t) + E kJzj(t) = f(t) (152)
0 j=2

We shall demonstrate the proof on the sample problem and then consider the general form.

If the dynanfical system has an evolution equation of the first order with quadratic nonlinearity;
i,e,_

dx
d-t + klx(t) + L'_z2(t) = f(t) (153)

we want to express the Fourier(or Laplace)-Borel transform of the system in terms of its transfer

fimction and the transform of the input function. To do this we shall take the Laplace-Borel

transform of the given equation, and hence, we have

:oX(zo) - x(0)+ klX(:0)+ k2X(:o)I_ I X(zo) = F(zo) (154)

We defined the transfer function as the Laplace-Borel transform of the output of the system for a

unit step fimction input with zero initial conditions (assuming that the system is initially dead).

f(t) = u(t) (155)

and

hence

or

x(O) : 0 (156)

2-1

:0X(-0) + h'aX(:o) + k2X(:0) H = 1

X(:o) =
:0 +/,'1 + k2 H

= c;(:o,l l)

Now we go back to the original equation and take the Laplace-Borel transform of it as

(157)

(158)

(159)

:oX(:o) + LqX(:o) + k2X(:o)H X(:o) = F(zo) + x(O) (160)

14



(--o+ kl + _'2LI) X(:o) : [r(:o) + _(0)]

or in terms of the transfer function

(161)

X(zo) : G(zo,LI)[F(:o) + x(0)] (162)

Notice that for the system of order one the memory effect consists of only the value of the response

at the start.

We shall repeat this procedure for the more general case of a dynanfical system described by

an n th order nonlinear ordinary differential equation with rn th order nonlinearity in it:

d i

i:1 j=2

(163)

or

E :iooiX(zo) - (_i-o-.;-a dx i-1 x(0) + _'lX(:o) + l_'JX('_°) H = F(:o)
i=1 i=1 j=2

(164)

(_ _ J]'-l) [ _ i-I _-1 ]
X(:o) aizio + kl + kj = F(:o) + aiz o _x(0) (165)

i=1 j=2 i=l

or

1 [
X(-'0) -- (X_in_-I _i'-'_ + _'1 + X-"mz..,j=2_'jll j- 1) F(z'0)

or in terms of the transfer function of the system we have:

_ a__i ]+ _,--g-'_x(o)
i--1

. di-1 ]
c_..i-_ _,(0)+ E ,'o dxi_ l

i=1
x(=0) : c(:0,[IJ-_). [r(-'o)

(166)

(167)

Notice that for i = 1 and j = 2 and al = 1 the preceding general relation reduces to

x(:0) : (:0+ _-,+ _,_I_I) IF(:0) + _'(0)l (168)

2-1

: G(:o, H)IF(z0) + x(O)] (169)

Corollary 1 (Main Corollary) : For a mcmoryless system the Laplace-Bord transform of th_

output o.[ th_ syshm is given by the ('auchy product of the transfer function with the Laplace-BotH

t,,,,,_sfo,.,,_ ,:f th¢ input o.f the system.

Proof of Corollary: The memory effects are lumped into the second term of the second factor of

the Cauchy product; i.e.,

. d i-10i2_ 1 dx i-1 x(0) (170)
i=l

which means flmction itself and its higher order derivatives evaluated at the zero time.

When the system has no nlemory we shall be left, with

X(:o) = G(zo, I_[)F(zo) (171)

15



In other words we can say that the main theorem has the same form as the linear systems if the

nonlinear system has no memory.

APPLICATIONS

We shall give examples both from synthesis and analysis of nonlinear circuits as applications to

Fourier-Borel based transfer function approach to nonlinear systems.

Representation of Nonlinear Resistance

By Laplace-Borel transformation

v - R(i)i (172)

R(i) = Ro + Rli + R_i _"+... (173)

: _ Rji j (174)
j=O

ltl

v = (_ RfiJ)i (175)
j=O

n

: Z R_iS+l. (176)
j=O

n .i+1

V(:o) = Z RJ(:o) LI
o

From the definition of system function

v(-0) -- R(:o, kl s+_).I(:0)

and the adnfittance fimction follows

:  ,,LI
j=O

j+l) 1
GI=o,LI - 2,LoR_II

(]77)

(178)

(179)

(180)

Representation of Nonlinear Capacitance

We sliall define the ilnpedance and adnfittance functions in Laplace-Borel domain as:

tl

c(,,) = _ o'S
j=O

(181)

16



Q = c(v)v

= _ (:jr j÷l

j=o

d

i= _Q

I(zo)-- zoQ(:o)

I(zo): :o cj ,(=o)l1(j+l)
j:O

(182)

(183)

(xs4)

(185)

(186)

(j+l)Y(:o) = Zo Cj LI (187)

j=o

Z(zo) : r(=o) -_ (188)

(j+l)

_ 1 _C./ H (189)
zo j=o

Representation of Nonlinear Inductance

We shall define the impedance and admiltance functions in the Laplace-Borel transfornl domain

as :

L(i) = _ Lj?(t)

TI

j=O

_(t) = L(i)i

= _ Lji j+l

(190)

(191)

(192)

(193)

(194)

j=O

d,I,

dt

d _ LjiJ+l
dt j=o

l he derivalive theorem applied once yields

V(Zo) : :o(I)(zo) (195)

j+l

: zo _ L iI(:o) H" (1961

j=o

We can write u,_ing the operator symbolism whereby H to any power indicates the shuffle product

which is discussed by l)nal in reference 1.

V(:o) : Z(:o)I(:o) (197)

17



. j+l

Z(-o) : --oZ Lj IJ (19s)
j=O

Y(:o) = Z-l(:o) (199)

1
: (200)

zo _./=o L./[]J+]

A Nonlinear Circuit

Figure 1 shows the first nonlinear system which we shall characterize by the following nonlinear

ordinary first-order differential equation.

i(t) = iR + ic + iRN (201)

: v/R + cdV_(d_) + iRN (202)

CdV I
• dt + -RV + k2,, 2 = i(t) (203)

dv

d-_ + kit, + k2v _ = i(t) (204)

2-1

:o[V(:o - v(0)] + kaV(:o) + k2V(:o) LI = I(:o) (205)

which l)ecomes
2-1

zoV(:o) + k,V(:o) + k2V(:o) H = i(-o) (206)

Tile system's transfer function is

G(:o, LI2_I) = 1
z0 + k, + k_ll 2-' (207)

We no/ice thai in this example the system's transfer function is an impedance; i.e., G _---.. Z.

18
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+

VRN

IRN = k2V2 N

Figure 1.- A nonlinear circuit.
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A Synthesis Problem

Let us suppose that we are given an impedance function Z(zo) as

z(:+) =
zo + 1"1+ k2H 2-1

1

Y(Zo)- Z(:o)

2-1

=zo+kl+k2H

In figure 2 we shall denote the three parallel elements by

El = 2.0

Y2 = kl

2-1

r'_= k, I_I

lq(_)= zo

(208)

(209)

(21o)

(211)

(212)

(213)

(214)

_C=I

r_(:o) = _.,

I
==_R =--

kl

2-1

)_(:o) : *'_H

(215)

(216)

(217)

(218)
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< 1/k 1
< ohm

+

VRN

IRN = k2V2N

Figure 2.- A synthesis problem.
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i = k2v 2

At this point we should look at figure 3 to see the equivalent circuit.

(2_9)

An Analysis Problem

Next we shall present an analysis example. Let us say that we are given an input current, of

i(t) = u(t)

i(t) = cos(wt)

I(-'0) = 1

v(:0) = z(--o)

Z(:o)=
Zo + kl +

This last fraction actually can be obtained using any

guages: 1) Macsyma; 2) Reduce; 3) PL1; and 4) Lisp.

In reference 2 this particular result tabulated, but

20 = ZO 1

2-1

I'(_o I + t._) = 1 - t,2Y H

W(1 + _'11'0) = ZO -- _-'2xoV H

t" = (1 + klx0)-lxo - k2(1 + klxo)-lzo(VUV)

(220)

(22_)

(222)

(223)
1

k21_i__1 (224)

of the following symbolic progranmfing lan-

we must change our variable

(225)

(226)

(227)

(228)

Tile inverse transformations can be obtained by partial fractions and the time domain response of

the system follows as

1 ks e_2t._t {229)
v(t) = _(I - c -j''t) - k-_(1 - 2klte -l''t- )+ ...

When the input, current, is given as

i(t) = cos(wt) (230)

sinfilar steps will be followed and we have

.2

-0 (231)
I(:o) - .2 + u,2

"0

:o = _o 1 (232)

1.... (1 + k,z0)-_(i + w2z_)-_Zo - k2(1 + k_zo)-'_.o[VLI V ] (233)

In table IV of"reference 2, this generating power series is obtained using a symbolic program. Inverse

_ransformation by partial fractions yields finally

1 [-kle -t''t + t._cos(wt) + wsin(wt)] +... (234)
v(t) - t._ + w2

22



¥1

Ih

Y2

v

I
Figure 3.- An analysis problem.
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Fr_chet Differential of the Response

Generating power series or equivalently Laplace-Borel transforms of the responses of nonlinear

systems assume the existence of analyticity throughout the regime. However, we are fully aware of

the fact that the loss of analyticlty is very important and as explained in reference 4 is equivalent to

the loss of Frdchet differentiability of the response, and hence, to the bifurcations of the response.

Bifurcations in between regimes do take place at the critical values of the system's parameters and

we can account for them by monitoring the Fr_chet differential of the response.

To fix ideas, let us consider the nonlinear circuit problem :

d
--v + klV + k2v 2 = i(t) (235)
dt

where i(t) represents the input current. Let us denote the Fr&het differential of the response by

6N[v, 71]which is given by its definition as

= (..It+.,l.-..I/l) (236)

or in Laplace-Borel transform domain,

6.N.[I., f/l = linm° (V[i+ Er/]¢- V[i]) (237)

where I, f_ are the Laplace-Borel transforms of v, r/, respectively. From the main theorem, we have

V(i) = G(z0, LI ). [£/_(i) + v(O)] (238)

Sinfilarly, using the main theorem once nmre we can write the output transformation for an input

i + _0 as

V(i + "1) = G(zo, I_I). [c13( i + "7)+ v(0)] (239)

since CB (i + ol) = CB (i) + ¢ £1301) we have

gAf[V, ftl = lira G(zo, H)£B(q) (240)
a C ______ 0

If _(:0) : £13(,!) then

dfA/'(l; fl) = li__m° G(zo, ] ]).fl(:o) (241)

or if we take q(t) : u(t) (i.e., unit step function), then f/(:o) TM 1 and the Fr_chet differential
})eCOllleS

_A/'[I', fl] = G(:o,I l) x 1 (242)

or

&Af[V, f_] = G(:o, LI) (243)

which states that the Frdchet differential in Laplace-Borel transform domain is given by/he transfer

function of the system.

It is quite straightforward to generalize the previous result as

i-a x(0) (244)X(f) = G(zo, H). V(:o) + oi'-o dxi_ 1
i=I
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and

X(f + eq) = G(zo, H). [F(zo) + efl(zo) + d/_i ]
~i-1

;=10i-O _ _'(0)

and hence

_N[F, n] = G(=0,I_I)×_(:0)

or with q(t) : u(t); i.e., unit step function

_x[r, n] : C(:o,LI)

(245)

(24_)

(247)

tlence, we have the following theorem

Theorem 10 {Frdehet Differential) : The Frdchet differential of the' response of a nonlinear

dynamical system with polynomial type of nonlinearities is given in tcrms of the system's tranf_r

function ond th_ variabh of the Laplace-Borel translorm as :

£hf(X) = G(zo, H) (248)

CONCLUDING REMARKS

We have demonstrated that the general response of nonlinear dynanfical systems can be ex-

pressed in terms of their transfer functions in an analogous way to the linear systems.

_Ve defined the transfer functions as the generalized series for the response of the nonlinear

dynanfical system which is initially at rest and which is loaded by a unit step function.

These transfer functions are ohtainable through symbolic computer algebra and currently we

have one of the following languages available to us: 1) Macsyma, 2) Reduce, and 3) PL1.

Analyticity of the response is assumed when the total response is expressed in terms of the

transfer functions.

As a result of the last theorem on the Fr6chet differential the loss of analyticity implies the

loss of Fr6chet differential (ref. 4), and the loss of Fr6chet differential implies the loss of transfer

flmction (i.e., at Bifurcation points) we can not deternfine the transfer functions.
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